Indian Statistical Institute M.Math II Year First Semester Examination, 2004-2005 Partial Differential Equations-I

Time: 3 hrs

Date:25-11-04

Each problem carries five marks.

Answer all the questions. The problems are interrelated - you may use the results of problems m_1, m_2, \ldots to solve problem n.

1. Show that every distribution with compact support belongs to $H^s(\mathbb{R}^n)$ for some $s \in \mathbb{R}$ whereas no distribution with finite support belongs to $H^{-\frac{n}{2}}(\mathbb{R}^n)$.

2. Show that every differential operator $P(X, D) = \sum_{|\alpha| \le k} a_{\alpha}(X) D^{\alpha}, x \in \mathbb{R}^{n}$ with C^{∞} coefficients is hypoelliptic if and only if n = 1.

3. Show that $\partial_r^2 T \varphi(r) = T(\partial_r^2 + \frac{2}{r}\partial_r)\varphi(r)$ where $T\varphi(r) = r\varphi(r)$. Hence or otherwise show that the general radial solution of the wave equation on \mathbb{R}^3 is of the form

$$u(X,t) = |X|^{-1}(\varphi(|X|+t) + \varphi(|X|-t))$$

for some φ and ψ .

- 4. Show that for $s > \frac{n}{2}$, $H^s(\mathbb{R}^n)$ is an algebra i.e $f, g \in H^s(\mathbb{R}^n)$ implies $fg \in H^s(\mathbb{R}^n)$ and $||fg||_s \leq C||f||_s||g||_s$. Is this true when s = 0?
- 5. Show that $P(D) = \left(\frac{\partial}{\partial X_1^2} \sum_{j=2}^n \frac{\partial^2}{\partial X_j^2}\right)$ does not satisfy Hormander's condition i.e $|P^{\alpha}(\xi)| \leq C_{\alpha}|\xi|^{-\delta|\alpha|}|P(\xi)|, |\xi|$ large for any $\delta > 0$ whereas $Q(D) = \frac{\partial}{\partial X_1} \sum_{j=2}^n \frac{\partial^2}{\partial X_j^2}$ satisfies the condition with $\delta = \frac{1}{2}$.
- 6. If $f, g \in s(\mathbb{R}^n)$ then for any $s \ge 0$ $(1+|\xi|^2)^{s/2} (fg)^{\wedge}(\xi) = \int K(\xi,\eta) u(\xi-\eta) v(\eta) d\eta$ where $u, v \in L^2(\mathbb{R}^n)$ and $K(\xi,\eta)$ satisfies

$$K(\xi,\eta) \leq C_s (1+|\eta|^2)^{-s/2} \quad \text{if } |\xi-\eta| \geq \frac{1}{2}|\xi|,$$

$$K(\xi,\eta) \leq C_s (1+|\eta-\xi|^2)^{-s/2} \quad \text{if } |\xi-\eta| \geq \frac{1}{2}|\xi|,$$

- 7. For each $w \in S^{n-1}$ define R on $s(\mathbb{R}^n)$ by $Rf(s, w) = \int_{u \in w^{\perp}} f(sw+u)du$. find Rf(s, w) explicitly when $f(X) = e^{-\frac{1}{2}|X|^2}$.
- 8. Show that the operator T_w defined by $T_w f(s) = \int_{-\infty}^{\infty} e^{i\lambda s} \hat{f}(\lambda w) d\lambda$ takes nonnegative functions into nonnegative functions.

9. If $s > \frac{n}{2}$ and $u, v \in L^2(I\!\!R^n)$ show that the function w defined by

$$w(\xi) = \int C1 + |\eta|^2 e^{-s/2} u(\xi - \eta) v(\eta) d\eta$$

belongs to $L^2(\mathbb{R}^n)$ and $||w||_0 leqC||u||_d ||v||_0$.

10. If f is a C^2 function define u by $u(x,r) = \int_{|y|=1}^{r} f(x+ry)\phi\sigma(y)$ for r > 0where $\phi\sigma$ is the normalised surface measure on S^{n-1} . Find a differential equation on $\mathbb{R}^n \times (0, \infty)$ satisfied by $u(x1^r)$. Hence or otherwise show that any C^2 function f satisfying

$$\int_{|y|=1} f(X+ry)\phi\sigma(y) = f(X)$$

for all r > 0 is actually C^{∞} .

- 11. Using the operator T is problem 3 find all radial harmonic functions on \mathbb{R}^3 .
- 12. Suppose $u_j(y,t)$, j = 1, 2, ..., n are solutions of the one dimensional heat heat equation. Show that $u(X,t) = \prod_{j=1}^{n} u_j(X_j,t)$ is a solution of $(\partial_t - \Delta)u = 0$ on \mathbb{R}^n . Is the same true for the Laplacian? Why?